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Domain formation in transitions with noise and a time-dependent bifurcation parameter
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The characteristic size for spatial structure, that emerges when the bifurcation parameter in model partial
differential equations is slowly increased through its critical value, depends logarithmically on the size of
added noise. Numerics and analysis are presented for the real Ginzburg-Landau and Swift-Hohenberg equa-
tions.[S1063-651X96)51605-3

PACS numbg(s): 02.50~r, 64.60.Ht, 05.70.Fh, 47.54r

Many physical systems undergo a transition from a spais frozen in by the nonlinearity. Thereafter one observes spa-
tially uniform state to one of lower symmetry. Classical ex-tial structure with characteristic size proportional to
amples are the formation of magnetic domains and thé|Ine/u)*. In GL this length is the typical size of the do-
Rayleigh-Benard instability/1]. Such systems are commonly mains; in SH it is the typical distance between defects.
modeled by a simple differential equation, having a bifurca- The results reported here were obtained by solving SPDEs
tion parameter with a critical value at which the spatially [3] of the following dimensionless form for stochastic pro-
uniform state loses stability. Noise is often assumed to proeessesy depending orx andt:
vide the initial symmetry-breaking perturbation permitting
the system to choose one of the available lower-symmetry dY=[g(t)Y—Y3+LY]dt+edW. i)
states, but is not often explicitly included in mathematical ) I .
models. However, when the bifurcation parameter is slowly! '€ €quations were solved as initial value problems, with
increased through its critical value it is necessary to consided(!) — ut slowly increased from—1 to 1. Here Y:
noise explicitly. [O,L] _><[—1//L,1//L.]><Q—>R, Qs a probgbn!ty space

The phenomenon of delayed bifurcation and its sensitivig2"d W is the Brownian shedd], the generalization of the
to noise has been reported in the case of nonautonomod¥iener procesgstandard Brownian motionto processes
stochastic ordinary differential equatiof&; here the corre- dependent on both space and time. Periodic boundaries
sponding phenomenon is examined in partial differential X aré used so that any spatial structure is not a boundary
equations. A characteristic length for the spatial pattern i€ffect. The constanta, e, and 1L are all<21. Results are
demonstrated from a stochastic partial differential equatioiePorted for %:A (GL) and £=—(1+4)" (SH) where
(SPDB, supported by numerical simulations. Noise is added® = ={~10%/dx;, the Laplacian irR™.
in such a way that it has no correlation length of its own In the first order finite difference algorithm for generating
(white in space and timeand a finite difference algorithm is numerical realizations of the lattice version @), y;+ (i)

used whose continuum limit is an SPDE. is generated frony,(i) as follows:

The mathematical description of transitions is in terms of . ) . 3. =
a space-dependent order paraméteand a bifurcation pa- Yerat(D) =ye(i) +[pty(i) —y(i) + Ly(i) JAt
rameterg. Because it is the simplest model with the essential 4 e(A%)"™2n,(i) VAL, 3

features, the real Ginzburg-Landau equati@h) is consid-
ered first. Results are also presented for the Swift-Hohenberg, (3), y,(i) is a numerical approximation to the valueYoht
equation(SH), that is more explicity designed to model site i at timet and £ is the discrete version of. The

Rayleigh-Benard convection. n.(i) are Gaussian random variables with unit variance, in-

. When the b|furcat|qn parametgris constant the _f°||OW' dependent of each other, of the values at other sites, and of
ing is found. Forg<0, in both GL and SH, the solution with the values at other times

Yfeve_rywherr(]e Oel(s_stablg._ln GLdfay>_O one sep?a pattern It is also possible to introduce multiplicative noise, for
of regions where/ is positive and regions whereis nega-  o,ample t0 makeg a random function of space and time

tive (domaing separated by narrow transition layers. In SHrg & Tha effect in that case is proportional to the magnitude

folrl g>0 there is g séru;:ture resembling a pattern of parallefs ine noise and is thus less dramatic at small intensities than
rolls, interrupted by defects. that of additive noise.

Wheng is slovyly increasgd through in the presence O,f The timing of the emergence of spatial structure can be
noisea characteristic length is produced as follows. The field,,, yerstood by deriving the stochastic ordinary differential

Y remains everywhere small until well afigipasses through - eqyation for the most unstable Fourier mode, which is of the
0. At g=g., where form [7]
gc=v2ullne€l, (1) dy=[g(t)y—y>]dt+ edw, (4

w is the rate of increase @ and € is the amplitude of the wherew is the Wiener process. Trajectories @) remain
noise,Y at last become®(1) and the spatial pattern present close toy=0 until well afterg=0, then jump abruptly to-
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3 spatially extended system where a uniform state loses stabil-

1.0F
. 1 ity to a collection of non-symmetric states. Whens fixed
0.5 = and positive in this equation, a pattern of domains is found.
. In each domainy is close either toJg or to —+/g. The
> 0.0r 7 gradual merging of domains on extremely long time scales
1 [9] is not the subject of this paper; here the focus is on how
-0.51 7 the domains are formed by a slow increase of the bifurcation
I I parameter through 0. An example is depicted in Fig. 2: a
—-1.0LC. : : : 3 pattern of domains emerges whe¥ns everywhere small and
-1.0 -0.5 0.0 0.5 1.0 is frozen in atg=g.. WhenY is small an excellent approxi-
g mation to the correlation functior,(x)=(Y(v)Y{(x+v)),

can be calculated from the solution of the linearized version
FIG. 1. Dynamic pitchfork bifurcation with noise. The dotted of (2) (that is, without the cubic tgr}pThe correlation I.ength
lines are the loci of stable fixed points pfgy—y® as a function at g=g. becomes the characteristic length for spatial struc-

of g. The solid lines are solutions of the nonautonomous $HE ~ ture afterg=gc. o , ,
with g= t, for noise levelse=10"3, 1075, 10°9, 10" (In each For GL, the solution of the linearized version @) is:

casep=0.01 and the initial condition ig=1.0 atg=—1.0.)

wards one of the new attractdiSig. 1). The value ofg at the
jump can be determined by solving the linearized version;
for u<<1 it is a random variable with mean approximately

d. and standard deviation proportional io[8]. + EJ't J G(t,5,%,0)dvdW,(v) (5)
The Ginzburg-Landau equation is a simple model of a —updpom T s

Yi(X)= f[OL]mG(t,—1/,u.,x,v)f(v)dv

a) g=-0.5 -
!
b) g=0.0
M FIG. 2. Dynamic transition, GL, one space di-
mension. Four configuration¥,(x), are shown
from one numerically generated realization of the
SPDE(note the different vertical scaleNonlin-
ear terms become important whgr=0.64; their
3.0x1073 [~ ¢) g=0.5 ] effect is to freeze in the spatial structure.
2.0x1075 - (L=300, x=0.01, e=10"10)
1}Qx‘!0_5 L .
0 3
~1.0x1073 .
-2.0x107° N

d) g=1.0
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FIG. 3. Number of zero crossings after a dynamic transition.
The dots are the mean number of upcrossings of @=afl in
numerical realizations of GL in one space dimension. The solid line
is the prediction based on the assumption that the correlation func-
tion (7) is valid until g=g., after which time the spatial pattern
does not changee&10* and L =800.) . =]

FIG. 4. Two-dimensional pattern a=1: smaller u means
where larger characteristic length. In black regioris:0; in white regions
Y>0. In GL, (a) and (b), the typical domain size decreases with
u , the rate of increase af. In SH, (c) and(d), where there is a
_M(t2—32)> short-range structure resembling parallel rolls, the effect of reduc-
ing u is to reduce the number of defectq@): GL, L=300,

. B m ] ) €=10"°, u=0.03.(b): GL, L=300,€e=10"°, x=0.003.(c): SH,
with x—v understood modulp0,L]™. The first term, depen L=200, =105 w=0.01. (d: SH, L=200, e=105,

dent on the initial datd(x), relaxes quickly to very small —0.001

values and remains negligible ifi2lne|<1. The correlation R

function is therefore obtained from the second integrabin " 12 14

The mean of the product of two such stochastic integrals is = L( —c (0)> :L( H ) @)
an ordinary integral[4]. Performing the integration over 2w\ ¢(0) 47\ 2|Ine|)

spacd 7], assuming that > (8/u)Y?, gives

(x—v)?
4(t—s)

G(t,s,x,v)=[4w(t—s)]‘m/2exy{ -

for a field with correlation function (7) at gg. [10]. The
tgu(t? =52 g xI8(t-9) hypothesis that the spatial pattern does not change after
c(x)= GZJO [Bm(t—s)]"? ds. 6)  g=g. is successful.

In one space dimension, the solution of the SRRESs a
stochastic process with values in a space of continuous func-
tions [3,11-13. That is, for fixed we) and t
e[ —1/u,1l/u], one obtains a configuratiolv;(x), that is a
continuous function ok. This can be pictured as the shape
of a string at time that is constantly subject to small random
impulses all along its length. In more than one space dimen-
—x2I8t. 7 sion, however, th&(x) are not necessarily continuous func-

tions but only distribution$3,12]. Typically the correlation
function c(x) diverges atx=0. In the dynamic equations

For 1N u<g< V2ulln €, typical values ofY(x) increase studied here, however, the divergent part does not grow ex-
exponentially fast and the correlation length is proportionalponentially forg>0, and byg= y2u|In € it is only apparent
to \t. Effectively noise acts fog=< \/u to provide an initial  on extremely small scales, beyond the resolution of any fea-
condition for the subsequent evolution. At a valugydhatis  sible finite difference algorithm. Figure 4 depicts configura-
a random variable with meag=g, and standard deviation tions atg=1 from realizations 0f2) in two space dimen-
proportional tow, the cubic nonlinearity becomes important. sions. In Figs. &) and 4b) (GL) one sees that a faster rate
Its effect is to freeze in the spatial structure; no perceptibleof increase ofj results in a smaller average domain size. The
changes occur betweeng. andg=1. SPDEs were simulated on a grid of 54812 points with

In one space dimension it is possible to put the scenarigsecond order time steppiid3].
just described to quantitative test by producing numerous The essential difference between the Swift-Hohenberg
realizations like that of Fig. 2 and recording the number ofand Ginzburg-Landau models is that the first spatial Fourier
timesY crosses upwards through 0 in the dompiL] at  mode to become unstable hias 1 rather thark=0. Hence
g=1. In Fig. 3 the average number of upcrossings is disthere is a preferred small-scale pattern that resembles the
played as a function of the sweep rate The solid line is the  parallel rolls seen in experiments. However, there is no pre-
expected number of upcrossings of zero, ferred orientation of the roll pattern and when the correlation

Before g approaches 0, the correlation function differs by
only O(u/g?) from its static §=consi form [7]; it remains
well behaved ag passes through 0 and, fge>\/u, is well
approximated by

4526“t2
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length is smaller than the system size, many defects arr example, a natural initial condition for studying the dy-

found, separating regions where the rolls have different orihamics of defects and phase separation because it emerges

entations. Wherg is increased through 0, the number of from a slow increase to supercritical of the bifurcation pa-

defects resulting decreases whedecreases—Figs(@ and  rameter in the presence of space-time noise, mimicking an

4(d). Here a grid of 30&300 points was used with first idealized experimental situation.

order time stepping. In summary, dynamic transitions are analyzed in models
A notable feature of dynamic bifurcations and dynamicof spatially extended systems with white noise. The correla-

transitions is that the evolution fag>0 is independent of tion length that emerges from the noise during a slow sweep

the initial conditions(provided they are such that the systempastg=_0 is frozen in by the nonlinearity as a characteristic

descends into the noiseNoise acts, neag=0, to wipe out  length proportional to |(ne//w)Y* where u is the rate of in-

the memory of the system and to provide an initial conditioncrease of the bifurcation parameter ani$ the amplitude of

for the subsequent evolution. The correlation funciignis, the noise.

[1] D.J. Scalapino, M. Sears, and R.A. Ferrell, Phys. Re\6, B Hernandez-Machado, and J.M. Sancho, Phys. Rev. L#it.
3409(1972; Robert Graham, Phys. Rev. 20, 1762(1974); 1542 (1994.

M.C. Cross and P.C. Hohenberg, Rev. Mod. Pi33. 851 [7] G.D. Lythe, inStochastic Partial Differential Equationgd-
(1993. ited by Alison Etheridgeg(Cambridge University Pess, Cam-
[2] C.W. Meyer, G. Ahlers, and D.S. Cannell, Phys. Rev4# bridge, 1994.
2514 (1991); Jorge Virals, Hao-Wen Xi, and J.D. Gunton, [8] M.C. Torrent and M. San Miguel, Phys. Rev. 38, 245
ibid. 46, 918(1992; P.C. Hohenberg and J.B. Swifhid. 46, (1988; N.G. Stocks, R. Mannella, and P.V.E. McClintock,
4773 (1992; Walter Zimmermann, Markus Seesselberg, and ibid. 40, 5361 (1989; J.W. Swift, P.C. Hohenberg, and
Francesco Petrucciondid. 48, 2699(1993. Guenter Ahlersibid. 43, 6572(1991); G.D. Lythe and M.R.E.

[3] J.B. Walsh, inEcole d’@é de probabilifes de St-Flour XIV Proctor, Phys. Rev. B7, 3122 (1993; Kalvis Jansons and
edited by P.L. HennequitSpringer, Berlin, 1986 pp. 266— Grant Lythe(unpublished
439; G. Da Prato and J. Zabczy&tochastic Equations in In-  [9] J. Carr and R. Pego, Proc. R. Soc. London Se#38 569
finite Dimensions(Cambridge University Press, Cambridge, (1992; J. Carr and R.L. Pego, Comm. Pure Appl. Madlz,
1992. 523(1989.

[4] If fq(x,t) and f,(x,t) are continuous functions o®X 7, [10] K. Ito, J. Math. Kyoto Univ.3-2, 207 (1964); R.J. Adler,The
where DeR™ and 7eR, then |;=[4pf;dx dW and Geometry of Random Field§Viley, Chichester, 1981
l,=[pf,dx dW are Gaussian random variables with [11] T. Funaki, Nagoya Math. B9, 129(1983; I. Gyongy and E.
(11)=0,{1,)=0 and({l 11,) = [ pf1(x,t) fo(x,t)dx dt Pardoux, Probab. Theory Relat. Fiell$ 413(1993.

[5] C.R. Doering, Phys. Lett. A22 133(1987; A. Becker and [12] C.R. Doering, Commun. Math. Phy%09, 537 (1987.

Lorenz Kramer, Phys. Rev. Leff3, 955(1994. [13] Grant Lythe, Ph.D. thesis, University of Cambridge, 199¢4-

[6] J. Garca-Ojalvo and J.M. Sancho, Phys. Rev.4B, 2769 published; Peter E. Kloeden and Eckhard Platéiymerical
(1994; L. Ramirez-Piscina, A. Hermadez-Machado, and J.M. Solution of Stochastic Differential Equatio(BSpringer, Berlin,

Sancho, Phys. Rev. B8, 119 (1994; J. Garca-Ojalvo, A. 1992.



