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The characteristic size for spatial structure, that emerges when the bifurcation parameter in model partial
differential equations is slowly increased through its critical value, depends logarithmically on the size of
added noise. Numerics and analysis are presented for the real Ginzburg-Landau and Swift-Hohenberg equa-
tions. @S1063-651X~96!51605-3#

PACS number~s!: 02.50.2r, 64.60.Ht, 05.70.Fh, 47.54.1r

Many physical systems undergo a transition from a spa-
tially uniform state to one of lower symmetry. Classical ex-
amples are the formation of magnetic domains and the
Rayleigh-Benard instability@1#. Such systems are commonly
modeled by a simple differential equation, having a bifurca-
tion parameter with a critical value at which the spatially
uniform state loses stability. Noise is often assumed to pro-
vide the initial symmetry-breaking perturbation permitting
the system to choose one of the available lower-symmetry
states, but is not often explicitly included in mathematical
models. However, when the bifurcation parameter is slowly
increased through its critical value it is necessary to consider
noise explicitly.

The phenomenon of delayed bifurcation and its sensitivity
to noise has been reported in the case of nonautonomous
stochastic ordinary differential equations@2#; here the corre-
sponding phenomenon is examined in partial differential
equations. A characteristic length for the spatial pattern is
demonstrated from a stochastic partial differential equation
~SPDE!, supported by numerical simulations. Noise is added
in such a way that it has no correlation length of its own
~white in space and time! and a finite difference algorithm is
used whose continuum limit is an SPDE.

The mathematical description of transitions is in terms of
a space-dependent order parameterY and a bifurcation pa-
rameterg. Because it is the simplest model with the essential
features, the real Ginzburg-Landau equation~GL! is consid-
ered first. Results are also presented for the Swift-Hohenberg
equation ~SH!, that is more explicitly designed to model
Rayleigh-Benard convection.

When the bifurcation parameterg is constant the follow-
ing is found. Forg,0, in both GL and SH, the solution with
Y everywhere 0 is stable. In GL forg.0 one sees a pattern
of regions whereY is positive and regions whereY is nega-
tive ~domains! separated by narrow transition layers. In SH
for g.0 there is a structure resembling a pattern of parallel
rolls, interrupted by defects.

Wheng is slowly increased through0 in the presence of
noisea characteristic length is produced as follows. The field
Y remains everywhere small until well afterg passes through
0. At g.gc , where

gc5A2mu ln eu, ~1!

m is the rate of increase ofg and e is the amplitude of the
noise,Y at last becomesO(1) and the spatial pattern present

is frozen in by the nonlinearity. Thereafter one observes spa-
tial structure with characteristic size proportional to
(u lneu/m)1/4. In GL this length is the typical size of the do-
mains; in SH it is the typical distance between defects.

The results reported here were obtained by solving SPDEs
@3# of the following dimensionless form for stochastic pro-
cessesY depending onx and t:

dY5@g~ t !Y2Y31LY#dt1edW. ~2!

The equations were solved as initial value problems, with
g(t)5mt slowly increased from21 to 1. Here Y:
@0,L#m3@21/m, 1/m#3V→R, V is a probability space
andW is the Brownian sheet@4#, the generalization of the
Wiener process~standard Brownian motion! to processes
dependent on both space and time. Periodic boundaries
in x are used so that any spatial structure is not a boundary
effect. The constantsm, e, and 1/L are all!1. Results are
reported forL5D ~GL! and L52(11D)2 ~SH! where
D5( i51

m ]2/]xi
2 , the Laplacian inRm.

In the first order finite difference algorithm for generating
numerical realizations of the lattice version of~2!, yt1Dt( i )
is generated fromyt( i ) as follows:

yt1Dt~ i !5yt~ i !1@mtyt~ i !2yt
3~ i !1L̃yt~ i !#Dt

1e~Dx!2m/2nt~ i !ADt. ~3!

In ~3!, yt( i ) is a numerical approximation to the value ofY at
site i at time t and L̃ is the discrete version ofL. The
nt( i ) are Gaussian random variables with unit variance, in-
dependent of each other, of the values at other sites, and of
the values at other times.

It is also possible to introduce multiplicative noise, for
example to makeg a random function of space and time
@5,6#. The effect in that case is proportional to the magnitude
of the noise and is thus less dramatic at small intensities than
that of additive noise.

The timing of the emergence of spatial structure can be
understood by deriving the stochastic ordinary differential
equation for the most unstable Fourier mode, which is of the
form @7#

dy5@g~ t !y2y3#dt1edw, ~4!

wherew is the Wiener process. Trajectories of~4! remain
close toy50 until well afterg50, then jump abruptly to-
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wards one of the new attractors~Fig. 1!. The value ofg at the
jump can be determined by solving the linearized version;
for m!1 it is a random variable with mean approximately
gc and standard deviation proportional tom @8#.

The Ginzburg-Landau equation is a simple model of a

spatially extended system where a uniform state loses stabil-
ity to a collection of non-symmetric states. Wheng is fixed
and positive in this equation, a pattern of domains is found.
In each domain,Y is close either toAg or to 2Ag. The
gradual merging of domains on extremely long time scales
@9# is not the subject of this paper; here the focus is on how
the domains are formed by a slow increase of the bifurcation
parameter through 0. An example is depicted in Fig. 2: a
pattern of domains emerges whenY is everywhere small and
is frozen in atg.gc . WhenY is small an excellent approxi-
mation to the correlation function,c(x)5^Yt(v)Yt(x1v)&,
can be calculated from the solution of the linearized version
of ~2! ~that is, without the cubic term!. The correlation length
at g5gc becomes the characteristic length for spatial struc-
ture afterg5gc .

For GL, the solution of the linearized version of~2! is:

Yt~x!5E
@0,L#m

G~ t,21/m,x,v ! f ~v !dv

1eE
21/m

t E
@0,L#m

G~ t,s,x,v !dvdWs~v !, ~5!

FIG. 1. Dynamic pitchfork bifurcation with noise. The dotted
lines are the loci of stable fixed points ofẏ5gy2y3 as a function
of g. The solid lines are solutions of the nonautonomous SDE~4!
with g5mt, for noise levelse51023, 1026, 1029, 10212. ~In each
casem50.01 and the initial condition isy51.0 atg521.0.)

FIG. 2. Dynamic transition, GL, one space di-
mension. Four configurations,Yt(x), are shown
from one numerically generated realization of the
SPDE~note the different vertical scales!. Nonlin-
ear terms become important wheng.0.64; their
effect is to freeze in the spatial structure.
(L5300,m50.01, e510210.)
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where

G~ t,s,x,v !5@4p~ t2s!#2m/2expS 2
~x2v !2

4~ t2s!
2m~ t22s2! D

with x2v understood modulo@0,L#m. The first term, depen-
dent on the initial dataf (x), relaxes quickly to very small
values and remains negligible if 2mu lneu,1. The correlation
function is therefore obtained from the second integral in~5!.
The mean of the product of two such stochastic integrals is
an ordinary integral@4#. Performing the integration over
space@7#, assuming thatL.(8/m)1/2, gives

c~x!5e2E
0

tem~ t22s2!e2x2/8~ t2s!

@8p~ t2s!#m/2
ds. ~6!

Before g approaches 0, the correlation function differs by
only O(m/g2) from its static (g5const! form @7#; it remains
well behaved asg passes through 0 and, forg.Am, is well
approximated by

c~x!.
e2emt2

~8mt !m/2
e2x2/8t. ~7!

For 1/Am,g,A2mu ln eu, typical values ofY(x) increase
exponentially fast and the correlation length is proportional
to At. Effectively noise acts forg<Am to provide an initial
condition for the subsequent evolution. At a value ofg that is
a random variable with meang.gc and standard deviation
proportional tom, the cubic nonlinearity becomes important.
Its effect is to freeze in the spatial structure; no perceptible
changes occur betweeng5gc andg51.

In one space dimension it is possible to put the scenario
just described to quantitative test by producing numerous
realizations like that of Fig. 2 and recording the number of
timesY crosses upwards through 0 in the domain@0,L# at
g51. In Fig. 3 the average number of upcrossings is dis-
played as a function of the sweep ratem. The solid line is the
expected number of upcrossings of zero,

r5
L

2p S 2c9~0!

c~0! D 1/25 L

4p S m

2u lneu D
1/4

, ~8!

for a fieldwith correlation function (7) at g5gc @10#. The
hypothesis that the spatial pattern does not change after
g5gc is successful.

In one space dimension, the solution of the SPDE~2! is a
stochastic process with values in a space of continuous func-
tions @3,11–13#. That is, for fixed vPV and t
P@21/m,1/m#, one obtains a configuration,Yt(x), that is a
continuous function ofx. This can be pictured as the shape
of a string at timet that is constantly subject to small random
impulses all along its length. In more than one space dimen-
sion, however, theYt(x) are not necessarily continuous func-
tions but only distributions@3,12#. Typically the correlation
function c(x) diverges atx50. In the dynamic equations
studied here, however, the divergent part does not grow ex-
ponentially forg.0, and byg5A2mu ln eu it is only apparent
on extremely small scales, beyond the resolution of any fea-
sible finite difference algorithm. Figure 4 depicts configura-
tions atg51 from realizations of~2! in two space dimen-
sions. In Figs. 4~a! and 4~b! ~GL! one sees that a faster rate
of increase ofg results in a smaller average domain size. The
SPDEs were simulated on a grid of 5123512 points with
second order time stepping@13#.

The essential difference between the Swift-Hohenberg
and Ginzburg-Landau models is that the first spatial Fourier
mode to become unstable hask51 rather thank50. Hence
there is a preferred small-scale pattern that resembles the
parallel rolls seen in experiments. However, there is no pre-
ferred orientation of the roll pattern and when the correlation

FIG. 3. Number of zero crossings after a dynamic transition.
The dots are the mean number of upcrossings of 0 atg51 in
numerical realizations of GL in one space dimension. The solid line
is the prediction based on the assumption that the correlation func-
tion ~7! is valid until g5gc , after which time the spatial pattern
does not change. (e51024 andL5800.)

FIG. 4. Two-dimensional pattern atg51: smallerm means
larger characteristic length. In black regionsY,0; in white regions
Y.0. In GL, ~a! and ~b!, the typical domain size decreases with
m , the rate of increase ofg. In SH, ~c! and ~d!, where there is a
short-range structure resembling parallel rolls, the effect of reduc-
ing m is to reduce the number of defects.~a!: GL, L5300,
e51025, m50.03. ~b!: GL, L5300,e51025, m50.003. ~c!: SH,
L5200, e51025, m50.01. ~d!: SH, L5200, e51025,
m50.001.
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length is smaller than the system size, many defects are
found, separating regions where the rolls have different ori-
entations. Wheng is increased through 0, the number of
defects resulting decreases whenm decreases—Figs. 4~c! and
4~d!. Here a grid of 3003300 points was used with first
order time stepping.

A notable feature of dynamic bifurcations and dynamic
transitions is that the evolution forg.0 is independent of
the initial conditions~provided they are such that the system
descends into the noise!. Noise acts, nearg50, to wipe out
the memory of the system and to provide an initial condition
for the subsequent evolution. The correlation function~7! is,

for example, a natural initial condition for studying the dy-
namics of defects and phase separation because it emerges
from a slow increase to supercritical of the bifurcation pa-
rameter in the presence of space-time noise, mimicking an
idealized experimental situation.

In summary, dynamic transitions are analyzed in models
of spatially extended systems with white noise. The correla-
tion length that emerges from the noise during a slow sweep
pastg50 is frozen in by the nonlinearity as a characteristic
length proportional to (u lneu/m)1/4 wherem is the rate of in-
crease of the bifurcation parameter ande is the amplitude of
the noise.
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